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Abstract
Self-organization is an ubiquitous phenomenon in nature which can be ob-

served in a variety of different contexts and scales, with examples ranging from fish
schools, swarms of birds or locusts, to flocks of bacteria. The observation of such
global patterns can often be reproduced in models based on simple interactions
between neighboring particles. In this paper we focus on particular interaction
dynamics closely related to the one described in the seminal paper of Vicsek and
collaborators. After reviewing the current state of the art in the subject, we study
a numerical scheme for the Vicsek and Frouvelle-Liu kinetic equations of interact-
ing particles, which has the specificity of preserving many physical properties of
the continuous models, like the positivity and the entropy. We describe a stable
pattern of bands emerging in the Frouvelle-Liu dynamics and give some insights
about the relationship between their formation, the mean density and the strength
of the ambient noise.

Contents
1 Introduction 2

2 Microscopic description 3
2.1 Vicsek model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Frouvelle-Liu dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Band formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Kinetic description 6
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Numerical scheme 10
4.1 Collision operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1.1 Discretization in θ . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Explicit Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Adaptative time step for the collision . . . . . . . . . . . . . . . . 13

4.2 Numerical scheme for the transport operator . . . . . . . . . . . . . . . 13
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Numerical experiments 15
5.1 Homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Band formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



1 Introduction 2

1 Introduction
Swarming dynamics have attracted a lot attention in recent years raising the question
how simple interaction rules could lead to complex pattern formation [22]. One of the
main difficulty is to link the individual behaviors of agents and the pattern formations
observed at a larger scale. Fortunately the framework of kinetic equations allows such
transition between micro and macro dynamics. Among the many swarming models
introduced [3], the Vicsek model [21] is one of the most popular since it is a rather
simple dynamics (there is only alignment) with few parameters but it is however able
to generate complex pattern which are challenging to predict analytically. The Vicsek
model have been well studied both numerically [6,18,19] or analytically [2,12,16] and the
derivation of its kinetic and macroscopic equation is well-understood [9,10]. However, as
noted first by Chaté and Grégoire [18], there exists a certain regime where the Vicsek
model leads to the formation of traveling bands. Many numerical studies have been
conducted to better analyze the formation of these bands at the particle level but no
work has been proposed to study the bands using kinetic or macroscopic framework.
This manuscript aims at to proposing a first study on such band formation from the
angle of kinetic equation.

After the discovery of band formation in the Vicsek dynamics by Chaté and Grégoire
[18], there has been a debate [1,5] about the order of the phase transition in the Vicsek
model (continuous or discontinuous). As there was no analytic framework available,
the conjecture could be only based on (particle) numerical simulation. However, the
derivation of kinetic and macroscopic equation for the Vicsek model [9,10] indicated that
in a dense regime of particles (the so-called moderately interacting particle [20]), the
Vicsek model has a continuous transition from order to disorder. In this regime of high
density, no phase transition or band formation could be observed. A major discovery
was then provided by Frouvelle and Liu [7,8,14] were a modification of the (continuum)
Vicsek was considered: alignment is proportional to the density. In their dynamics,
a phase transition occurs: at low density, the velocity distribution becomes uniform,
whereas at large density, the dynamics converge to a so-called von Mises distribution.
This analytic result was only proven in an homogeneous setting (no spatial variable).
Thus, it is still unknown what effect would have a transport term on the dynamics.
This is however a very challenging question as the transport term breaks the entropy
dissipation. In this manuscript, we propose to investigate numerically the Frouvelle-Liu
dynamics in a non-homogeneous setting.

Starting from the kinetic equation associated with the Vicsek model, we first review
some properties of the collisional operator (entropy dissipation) that will be central for
the building of our numerical scheme. Most of the estimate are built on the Fokker-
Planck structure of the operator. We do take advantage of this formulation in the
design of our numerical scheme. The key properties of the collision operator (positivity
preserving, entropy dissipation) are also satisfied for the discrete operator. Since we
aim at analyzing the long-time behavior of the solution, it is essential to preserve these
properties. For instance, several papers have already proposed to solve numerically
the kinetic equation associated with the Vicsek model using other methods (spectral
method [15], particle method [11], discontinuous Galerkin [13]). But we rather have
lower accuracy and a preserving numerical scheme to study the long-time behavior of
the solution (even though our scheme is still second order accurate in the velocity-
variable). We then explore the dynamics of the kinetic equation in various regimes. In
the original Vicsek model, no band formations are observed, the spatial density becomes
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homogeneous while the velocity distribution become distributed according to a (global)
von Mises distribution. In the Frouvelle-Liu dynamics however, when the density is
above a threshold, band formation occurs starting from random initial configuration.
As far as the authors know, this is the first time such band formations are observed
at the kinetic level. Band were also observed in [13] but there were only ’transient’,
the density profile would become flat after a long time. Here, the density profile is not
flattening out, but instead is becoming more and more concentrated. Numerically, we
have to introduce an adaptive time step to deal with a demanding CFL condition.

Although our numerical investigation suggest that band formation emerge from the
Frouvelle-Liu dynamics, it would be crucial to also develop an analytic framework to
further understand. Our result indicate that the transport operator could further the
alignment operator making concentration. From these observations, it seems unlikely
that there exists an analytic profile for these band formations. But the question remains
open. Similar, we could perform simulation in dimension 3, but the discretization of
the unit sphere S2 is more delicate than S1 (there is no ’uniform grid’ on S2) and thus
having discrete entropy dissipation or symmetry preserving would be more challenging.
Finally, higher order accuracy in time discretization should also be investigating using
for instance [4, 17].

2 Microscopic description
2.1 Vicsek model
The Vicsek model [10, 21] at the particle level describe the motion of N particles with
position xi ∈ Rd (with d = 2, 3) and a direction ωi ∈ Sd−1 (i.e. |ωi| = 1). The evolution
of the particles is given by the following system:

x′i = cωi
dωi = Pω⊥

i
(µΩidt+

√
2σ ◦ dBti ),

(2.1)

where c > 0 is the speed of the particle, µ is the strength of the alignment interaction, σ
is the intensity of the noise and dBti are independent white noise, Pω⊥i is the orthogonal
projection on the orthogonal of ωi

Pω⊥
i

= Id− ωi ⊗ ωi (2.2)

it ensures that |ωi(t)| = 1 over time, Ωi is the average direction of the particle i:

Ωi = ji
|ji|

, ji =
∑

j,|xj−xi|≤R

ωj , (2.3)

with R the radius of interaction,

2.2 Frouvelle-Liu dynamics
Frouvelle and Liu [8, 14] proposed a modification of the dynamics where the alignment
interaction µ is proportional to the norm of the flux ji:

x′i = cωi
dωi = Pω⊥

i
(µ jidt+

√
2σ ◦ dBti ).

(2.4)
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This modification has several consequences: i) the Vicsek model 2.1 is not-defined when
the flux ji equal zero (Ωi not defined) where the Frouvelle-Liu dynamics does not have
any singularity, ii) there is a phase transition in the dynamics (2.4) as the number of
particles increases (or similarly as µ increases). The kinetic description of this dynamics
will allow to better explain this phase transition (see section 3.2).

2.3 Band formation
Band formations have been first analyzed by Grégoire and Chaté [18] in the case of
the original discreet Vicsek model and several numerical studies have been conducted
since [1,6,19]. To motivate our study, we present numerically an example of such band
formation in the context of the continuous dynamics (2.1).

The numerical simulation is performed with N = 30, 000 particles on a square
domain with length L = 4 and periodic boundary condition. Initially, particles are
distributed at random in space and velocity. Table 1 gives the list of values for the
parameters. We observe in figure 1 the formation of a traveling wave moving in the
x-direction. To further quantity this formation, we estimate the average density ρ and
velocity u in the x-direction:

ρ(x, t) = #{i : x−∆x/2 ≤ xi(t) ≤ x+ ∆x/2} (2.5)
ρ(x, t)u(x, t) =

∑
i: x−∆x/2≤xi(t)≤x+∆x/2

cos θi. (2.6)

where xi and cos θi are resp. the x-component of the position vector xi and velocity ωi.
We give an example of such ρ and u in the figure 2.

We notice that the regime in which the band formation occur is far from being dense.
Indeed, in a homogeneous setting, the average number of neighbors is given by:

Average neighbors ≈ |B(0, R)|
L2 ×N = 2.36,

therefore we are far from being in kinetic regime (let alone macroscopic region). Thus,
the validity of the kinetic equation associated with the dynamics (described in the
next section) is questionable in this regime. Particles are not necessarily ’moderately
interacting’ [20].
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Figure 1: Illustration of the simulation of the Vicsek model (2.1) at two different time.
We observe the formation of a vertical band. See table 1 for the parameters used.
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Figure 2: Density ρ and average velocity u in the x-direction at t = 52. Where the
density ρ is larger, the speed u increases.

Description notation value
Number particles N 30, 000
Strength alignment µ 100
Noise intensity σ 20
Radius interaction R .02
Length domain L 4
Time step ∆t 10−2

Table 1: Parameters used in the simulations for figures 1-2
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3 Kinetic description
3.1 Introduction
The kinetic equation associated with the Vicsek dynamics (2.1) is described through
the density distribution f(x, ω, t). As the number of particles N tends to infinity, the
particle dynamics converge to the solution of a deterministic equation given by [2]

∂tf + c ω · ∇xf = −µ∇ω · (Pω⊥(Ωf ) f) + σ∆ωf (3.1)

where c > 0 is the speed of the particles, µ > 0 is the intensity of the relaxation toward
the mean velocity and σ > 0 is the diffusion coefficient and Pω⊥ the projection operator
(2.2), Ω is the mean velocity at the point x

Ωf (x) = jf (x)
|jf (x)| with jf (x) =

∫
y∈B(x,R),ω∈Sd−1

ωf(y, ω) dydω, (3.2)

R > 0 being the radius of interaction.
The Frouvelle-Liu dynamics lead to a similar kinetic equation except for the trans-

port term in ω:

∂tf + c ω · ∇xf = −µ∇ω · (Pω⊥(jf ) f) + σ∆ωf. (3.3)

in other words the strength µ of alignment is now proportional to |jf |.

3.2 Homogeneous case
To investigate kinetic equations, we study the homogeneous case, assuming that f is
independent of x. Thus, the kinetic equations (3.1) and (3.3) become:

∂tf = Q(f) (3.4)

with:

Q(f) = −µf∇ω · (Pω⊥(Ωf ) f) + σ∆ωf (3.5)

and Ωf = jf
|jf | with jf =

∫
ω∈Sd−1 ωf(ω) dω and

µf =

 µ Vicsek dynamics

µ|j| Frouvelle-Liu dynamics.
(3.6)

The operator Q (3.5) can be written as Fokker-Planck type equation introducing:

φ(ω) =

 〈jf , ω〉 Vicsek dynamics

〈Ωf , ω〉 Frouvelle-Liu dynamics.
(3.7)

with 〈, 〉 the usual scalar product in Rn, we find:

Q(f) = σ∇ω ·
(
Mf∇ω ·

(
f

Mf

))
, with Mf (ω) = e

µ
σφ(ω) (3.8)
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using the identity ∇ω〈u, ω〉 = Pω⊥(u). We deduce a first identity:∫
ω

∂tf
f

Mf
dω = −σ

∫
ω

Mf

∣∣∣∣∇ω ( f

Mf

)∣∣∣∣2 dω ≤ 0. (3.9)

Unfortunately, the left-hand side of (3.9) cannot be written as a total time derivative
and thus we cannot deduce any entropy decay. The trick is to notice the following:

Q(f) = σ∇ω ·
(
f
Mf

f
∇ω ·

(
f

Mf

))
(3.10)

= σ∇ω ·
(
f ∇ω · ln

(
f

Mf

))
. (3.11)

Therefore, ∫
ω

∂tf ln
(
f

Mf

)
dω = −σ

∫
ω

f

∣∣∣∣∇ω ln
(
f

Mf

)∣∣∣∣2 dω ≤ 0. (3.12)

Thanks to the property of the logarithm, the left-hand side can now be written as a
total time derivative and we deduce the following proposition.

Proposition 3.1 Suppose f solution to the homogeneous kinetic equation (3.4) and
consider the free energy:

F [f ] =
∫
ω

f ln f dω − µ

σ
Φf , (3.13)

with:

Φf =

 |jf | Vicsek dynamics

1
2 |jf |

2 Frouvelle-Liu dynamics.
(3.14)

It satisfies:
d

dt
F = −σ

∫
ω

f

∣∣∣∣∇ω ln
(
f

Mf

)∣∣∣∣2 dω ≤ 0. (3.15)

Proof. We only need to show that left-hand side of (3.12) is a total derivative:∫
ω

∂tf ln
(
f

Mf

)
dω =

∫
ω

∂tf
(

ln f − µ

σ
φ
)

dω (3.16)

=
∫
ω

∂t(f ln f)− µ

σ
∂tf · φdω (3.17)

using the conservation of mass
∫
ω
∂tf dω = 0. Notice moreover that φ (3.7) can be

expressed as gradient (making the dynamics (3.5) a gradient flow as noted in [12]).
Indeed, taking f + ε a small perturbation of f , we have:

|jf+ε|2 =
∣∣∣∣∫
ω

(f + ε)ω dω
∣∣∣∣2 = |jf |2 + 2〈

∫
ω

fω dω,
∫
ω

εω dω〉 + O(ε2) (3.18)

= |jf |2 + 2
∫
ω

〈jf , ω〉εdω + O(ε2), (3.19)

thus δ|jf |2
δf (ω) = 2〈jf , ω〉. One deduces φ = δΦ

δf with Φ given by (3.14). We deduce:∫
ω

∂tf · φ(ω) dω =
∫
ω

∂tf ·
δΦ
δf

(ω) dω = d
dtΦ(f(t)) (3.20)
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Therefore, we obtain: ∫
ω

∂tf ln
(
f

Mf

)
dω = d

dtF (3.21)

with F given by (3.13). �

3.3 Phase transition
Since the dynamics (3.5) have entropy, one can study the long-time behavior and deduce
the convergence toward equilibrium given as the minimizer of the free energy F (3.13).
But first we need to identify the minimizers of F . To do so, we notice that once we fix
the flux jf , the minimizer would be given by von Mises.

Lemma 3.2 Fix j with 0 < |j| < 1 and consider the affine space:

A =
{
f ∈ L2(Sn−1) |

∫
Sn−1

ωf(ω) dω = j and
∫
Sn−1

f(ω) dω = 1
}
. (3.22)

Then:
inf
A

{∫
ω

f ln f dω
}

=
∫
ω

M∗ lnM∗ dω (3.23)

with M∗ von Mises (3.8) satisfying
∫
ω
ωM∗(ω) dω = j.

Proof. Assume there exists a minimizer f∗ and rewrite the constraint as

H[f ] =
∫
f ln f , α[f ] =

∣∣∣∣∫
Sn−1
ωf − j

∣∣∣∣2 − 1 , β[f ] =
(∫

Sn−1
f − 1

)2
. (3.24)

Denote λ1 and λ2 the Lagrange multiplier associated with f∗:

δH

δf

∣∣∣∣
f∗

= λ1
δα

δf

∣∣∣∣
f∗

+ λ2
δβ

δf

∣∣∣∣
f∗

(3.25)

⇒ ln f∗ + 1 = λ1 2ω · (−j) + λ2 · 0. (3.26)

since
∫
f∗ = 1. Thus, taking the exponential leads to:

f∗(ω) = Ce−2λ1ω·j

and therefore f∗ is a von Mises distribution. �

As a consequence of the lemma, we can restrict the search of minimizers of the free
energy F on von Mises distributions. In figure 3, we estimate numerically the entropy∫
ω
M lnM of von Mises distribution depending on their average velocity |j| = |

∫
ω
ωM |

along with its approximation near j ≈ 0:∫
ω

M logM = − log 2π + |j|2 + O(|j|3). (3.27)

We deduce that the free energy F for the Vicsek model will never have a minimum at
j = 0 meaning that the uniform distribution is never stable. However, for the Frouvelle-
Liu dynamics, when the diffusion σ is large, the free entropy F will be minimum at
j = 0 and therefore the uniform distribution will become the stable equilibrium. These
two situations are depicted in figure 4.
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4 Numerical scheme
Several schemes have already been proposed to study the kinetic equation (3.1) using
spectral method [15], discontinuous Galerkin [13] or semi-Lagrangian [11]. However,
we are now interested in the long time behavior of the solution, thus we would like to
design a numerical scheme with several properties:

• conservative, preserve positivity (under some CFL condition)

• satisfy a discrete version of inequalities (3.9) and (3.12)

In the following, we study the 2D scenario taking advantage that the velocity space

ω ∈ S1 can be parametrized using polar coordinates by θ ∈ R/2πZ with ω =
(

cos θ
sin θ

)
.

Thus, the kinetic equation (3.1) becomes:

∂tf + c ω · ∇xf = −µ(f) ∂θ(sin(θ̄ − θ)f) + σ∂2
θf, (4.1)

where θ̄ is such that:
Ω =

(
cos θ̄
sin θ̄

)
(4.2)

and µ(f) is either a constant (Vicsek model) or proportional to |j| (Frouvelle-Liu dy-
namics). Our numerical scheme is then based on a splitting method solving separately:

• the transport part
∂tf + c ω · ∇xf = 0 (4.3)

• the collision part :
∂tf = Q(f) (4.4)

where Q(f) = −µf∂θ(sin(θ̄ − θ)f) + σ∂2
θf

4.1 Collision operator
In this section we focus on numerically solving equation (4.4). We write:

Q(f) = −µ(f)∂θ(sin(θ̄ − θ)f) + σ∂2
θf = σ∂θ

(
Mf∂θ

(
f

Mf

))
(4.5)

where Mθ̄ is the Von Mises distribution :

Mf (θ) = C0 exp
µ(f)
σ cos(θ−θ̄),

where C0 is a normalization constant. Here, we simply take C0 = 1.

4.1.1 Discretization in θ

FixN > 0 and consider a uniform discretization of the interval [0, 2π) with θk = i∆θ and
∆θ = 2π

N . Denote: fk = f(θk) and fk+ 1
2

= f(θk+∆θ/2) and similarlyMk = Mf (θk). To
approximateQ (which is a differential operator), we use the second order approximation:

∂θ

(
f

Mf

)∣∣∣∣
θk

= 1
∆θ

(
fk+ 1

2

Mk+ 1
2

−
fk− 1

2

Mk− 1
2

)
+O(∆θ2)
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which gives
Q(f)(θk) = QN (f)(θk) +O(∆θ2),

with

QN (f)(θk) = σ

∆θ2

[
Mk+ 1

2

(
fk+1

Mk+1
− fi
Mi

)
−Mk− 1

2

(
fk
Mk
− fk−1

Mk−1

)]
(4.6)

= σ

∆θ2

[
Mk+ 1

2

Mk+1
fk+1 −

(
Mk+ 1

2
+Mk− 1

2

Mk

)
fk +

Mk− 1
2

Mk−1
fk−1

]
. (4.7)

The discrete operator QN can be identified with a square N ×N matrix:

QN := σ

∆θ2



b1 c1 0 · · · 0 a1
a2 b2 c2 · · · 0

0 a3 b3
...

...
. . .

0 bn−1 cn−1
cn 0 · · · an bn


(4.8)

and
ak =

Mk− 1
2

Mk−1
, bk = −

Mk+ 1
2

+Mk− 1
2

Mk
, ck =

Mk+ 1
2

Mk+1
(4.9)

with a slight abuse of notation such as M− 1
2

= MN− 1
2
(by periodicity of M).

The discrete operator QN has many features of the differential operator Q. Denote
the scalar product:

〈u, v〉M−1 =
N∑
i=1

ukvk
Mk

,

the operator QN satisfies some equivalent relation as (3.9) and (3.12).

Proposition 4.1 The operator QN (4.6) is symmetric with respect to this scalar prod-
uct:

〈QN (u), v〉M−1 = 〈u,QN (v)〉M−1

and satisfies:

〈QN (u), u〉M−1 = − σ

∆θ2

∑
k

Mk+ 1
2

(
uk+1

Mk+1
− uk
Mk

)2
≤ 0 (4.10)

〈QN (u), ln u

M
〉 ≤ 0. (4.11)

Proof. Take any vectors u and v, Abel formula (discrete integration by parts) gives:

〈QN (u), v〉M−1 = σ

∆θ2

∑
k

Mk+ 1
2

(
uk+1

Mk+1
− uk
Mk

)(
vk
Mk
− vk+1

Mk+1

)
(4.12)

= 〈u,QN (v)〉M−1 .

From (4.6), we also deduce (4.10).
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Moreover, using once again Abel formula:

〈QN (u), ln u

M
〉 = σ

∆θ2

∑
k

Mk+ 1
2

(
uk+1

Mk+1
− uk
Mk

)(
ln uk
Mk
− ln uk+1

Mk+1

)
.

Thus, denoting x = uk+1
Mk+1

and y = uk
Mk

, we have an expression of the form:

(x− y)(ln y − ln x) = (x− y) ln y
x
≤ 0

for any x, y > 0. We deduce (4.11). �

4.1.2 Explicit Euler

The Euler method can be used to discretize in time the collisional part of the kinetic
equation (4.4):

fn+1 = fn + ∆tQN (fn) = (Id + ∆tQN )fn.

A sufficient condition to have L∞ stability of the scheme is to have the matrix Id+∆tQN
positive matrix (i.e. all coefficients positive). This sufficient condition leads to the
following CFL condition:

max
k
{|bk|}

σ∆t
∆θ2 < 1, (4.13)

which is usual for diffusion type operator. Moreover, if the CFL condition is met, then
positivity and mass are preserved.

Remark 4.2 We can find an explicit sufficient condition to guarantee the CFL condi-
tion (4.13). Indeed, writing:

Mk+ 1
2

Mk
=

exp
(
µf
σ cos(θk+ 1

2
− θ)

)
exp

(µf
σ cos(θk − θ)

) = exp
(µf
σ

[cos(θk+ 1
2
− θ)− cos(θk − θ)]

)
= exp

(
−2µf

σ
sin
(
θk − θ + ∆θ

4

)
sin
(

∆θ
4

))
using cosα− cosβ = −2 sin α+β

2 sin α−β
2 . We deduce

Mk+ 1
2

Mk
≤ exp

(
2µf
σ

sin
(

∆θ
4

))
.

and find:
max |bk| ≤ 2 exp

(
2µf
σ

sin
(

∆θ
4

))
= 2 + µf

σ
∆θ +O(∆θ2).

This leads to the tractable (sufficient) CFL condition:

2σ∆t
∆θ2 < exp

(
−2µf

σ
sin
(

∆θ
4

))
. (4.14)
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Algorithm 1 Collision part eq. (4.4)
1: procedure Collision(f(θk),∆t)
2: j =

∑
k ωkfk∆θ; θ = angle(j)

3: Mk = exp(µfσ cos(θk − θ))
4: for k in 1 : N do
5: QN (f)k = σ

∆θ2 · (akfk−1 − bkfk + ckfk+1)
6: end for
7: f += ∆t ·QN (f)
8: Return f
9: end procedure

4.1.3 Adaptative time step for the collision

One of the difficulties in computing an approximate solution to (3.3) is coping with the
associated CFL condition (4.13). Indeed, the existence of a locally high |j(f)| greatly
decreases the right-hand side of (4.13), which penalizes the whole algorithm. Hence
using a global CFL condition for the transport part and the collision part can lead to
extremely long computation time.

We propose to decouple the time steps for the transport part and the collision
equation at each time step, by using an adaptative method for the latter. Technically,
we use the maximal time step associated with the CFL condition to solve the transport
part (4.3), ∆t = ∆x, which incidentally has the advantage of minmizing numerical
diffusion. Then, for each (xi, yj), we consider (4.4) as a differential equation with final
time ∆t, which we solve by using the method described in Section 4.1 with a variable
time step δt that needs to be recomputed at each time 0 ≤ t′ ≤ ∆t:

δt(t′) := min
(

∆θ2

2σ exp
(
µ(f)

−2 sin(∆θ
4 )

σ

)
,∆t− t′

)
.

This method also works for a constant relaxation µ(f) = µ0, and can be preferred
because it minimizes the numerical diffusion in the transport equation. Particularly
when the constant σ = µ

D is large, in which case the collision CFL (4.14) is much
smaller than the transport CFL (4.15).

A comparison between the errors done by the standard and adaptative schemes,
respectively, is shown in Figure 5.

4.2 Numerical scheme for the transport operator
We use an upwind finite-difference method to solve the transport equation (4.3). We
fix M > 0 and consider a uniform discretization of the interval [0, L) in M points with
xi = i∆x, yj = j∆y, and ∆x = ∆y = L

M . To discretize the kinetic equation, we use:

cos θ ∂xf =
{

cos θ f(xi)−f(xi−1)
∆x +O(∆x), if cos θ ≥ 0

cos θ f(xi)−f(xk+1)
∆x +O(∆x), if cos θ ≤ 0,

and similarly for sin(θ)∂yf . Using this discretization, the standard Euler scheme gives
as CFL condition:

c
∆t
∆x < 1 (4.15)
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Figure 5: Comparison of the standard and adaptative methods for the collision operator
(Vicsek). Parameters are: µ = 1.0, σ = 0.2, ρ = 1.0, ∆t = 8.458 · 10−7 (standard),

∆t = 0.1 (adaptative), T = 1.0. The initial condition is f0(θ) = ρ

(
1 + 1

5

5∑
k=1

cos(pkθ)
)

where p1 = 1 and pk is the prime following pk−1.

Algorithm 2 Transport part eq. (4.3)
1: procedure Transport(f(xi, yj , θk),∆t)
2: for i, j, k do

3: Fi+ 1
2 ,j,k

=
{
c cos θi+ 1

2
fi,j,k if cos θi+ 1

2
≤ 0

c cos θi+ 1
2
fi+1,j,k if cos θi+ 1

2
≥ 0

4: end for
5: for i, j, k do
6: fi,j,k += −∆t

∆x · (Fi+ 1
2 ,j,k
− Fi− 1

2 ,j,k
)

7: end for
8: for i, j, k do

9: Fi,j+ 1
2 ,k

=
{
c sin θj+ 1

2
fi,j,k if sin θi+ 1

2
≤ 0

c sin θj+ 1
2
fi,j+1,k if sin θi+ 1

2
≥ 0

10: end for
11: for i, j, k do
12: fi,j,k += −∆t

∆y · (Fi,j+ 1
2 ,k
− Fi,j− 1

2 ,k
)

13: end for
14: Return f
15: end procedure
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4.3 Summary
The full algorithm is finally a splitting between the transport and collision part. Notice
that the time step ∆t should satisfy both CFL conditions (4.13) and (4.15). In general,
the collisional CFL (4.13) is more restrictive. Therefore, the transport equation will
be solved with a small CFL corresponding to large numerical viscosity. Since we aim
at studying the large time behavior of the dynamics, this numerical viscosity might
drastically change the outcome. Thus, we propose to use an adaptive method for the
collisional operator. The idea is to simply iterativeK ’small’ steps δt = ∆t/K to update
the collision part choosing K such that ‘δt satisfies the CFL condition (4.14).

Algorithm 3 Collision part eq. (4.4)
1: procedure CollisionAdapt(f(θk),∆t)
2: Find K such that δt = ∆t/K satisfies (4.14)
3: for s in 1 : K do
4: f = Collision(f, δt)
5: end for
6: Return f
7: end procedure

Algorithm 4 Full kinetic eq. (3.1)
1: Fix ∆t < min(∆x,∆y)/c
2: t = 0
3: while t < T do
4: f∗ = Transport(fn,∆t)
5: for i, j do
6: fn+1

i,j,k = CollisionAdapt(f∗i,j,k,∆t)
7: end for
8: t += ∆t
9: end while

10: Return f

5 Numerical experiments
5.1 Homogeneous case
To first investigate our numerical scheme, we study the homogeneous equation, thus
solving only the collision operator (4.4). We present numerical experiment the Vicsek
model (3.1), however results are similar with the Frouvelle-Liu dynamics except that
the time step ∆t may have to be adapted since the CFL condition depends on |j| which
varies over time.

As a first sanity check, we estimate the accuracy of the scheme. With this aim,
we fix a final time T = 1 and time step ∆t = .001. Then, we vary the meshgrid in θ,
taking ∆θ ∈ { 2π

8 ,
2π
16 , . . . ,

2π
128} and estimate the L2 error with the reference solution fref

computing with ∆θ = 2π
256 . For the initial condition, we use a smooth initial condition:

f0(θ) = (1.1 + cos 4θ) · exp
(
− cos

(
π(s+ s8)

))
, with s = θ/2π. (5.1)



5.2 Band formation 16

We use a rather complicated expression to make sure that f0 is non-symmetric. When
f0 is symmetric, the mean direction θ̄ is preserved over time, thus the Vicsek dynamics
(3.4) becomes a linear evolution equation. Twisting the initial condition f0 guarantees
to have a fully non-linear equation.

In figure 6-left, we plot the initial condition f0 along with the reference solution fref
at t = 1. The L2 error for various discretization is given in log scale in figure 6-right.
We observe that the error is decaying quadratically as expected.

Moreover, we also investigate the large-time behavior of the solution. First, we mea-
sure the evolution free entropy F over time and we observe that it is strictly decreasing
(fig. 7-left). Second, we estimate the rate of convergence of f(t) toward an equilibrium
distribution. Using semi-log scale in fig. 7-right, we observe a linear decay indicating
that the convergence is exponential.

5.2 Band formation
In the Vicsek model (3.1), we did not observe the formation of any bands. Rather, the
dynamics always converge to a robust global alignment dynamics, where the spatial dis-
tribution (first moment of f) converges to a constant. The typical long-time behaviour
is represented in Figure 8. We postulate that the long-time behaviour of this equation
is just to converge to a uniform distribution of Von Mises equilibria to the homogeneous
equation.

On the other hand, the Frouvelle-Liu model (3.3) of interaction leads to the ob-
servation of bands. Typically, for a fixed set of parameters, we observed two different
scenarios regarding the behavior of the local density ρ and mean value ρ

ρ(t,x) =
∫
S1
f(t,x, ω)dω , ρ̄ =

∫
[0,L]2×S1 f(x, ω)dxdω

2πL2 , (5.2)

For a fixed mean value ρ, when the strength of interaction µ is small compared to the
diffusion parameter σ (i.e. µ� σ), we observe that the solution converges to a uniform
steady state. However, when µ � σ, we observe the formation of bands as shown in
Figure 9 (in which the x-axis has been reversed to provide better aesthetics). Thus, we
retrieve an equivalent of the phase transition dynamics noticed by Frouvelle and Liu
in [14]. Those bands were first noticed starting from a random initial condition (Figure
9a). Even though they literally emerge from chaos, they appear to be only meta-stable,
as their small inhomogeneity in the direction perpendicular to the propagation amplifies
slowly by attracting the neighbour particles and finally lead to high and localized con-
centrations as shown in Figure 9b. At this point the computation is difficult to continue
due to the extremely high computation times required by the CFL condition. Starting
from an initial condition which is homogeneous in one direction (e.g. in y), however,
the observed bands are very stable in time and can be kept alive for apparently an
arbitrarily long time (the homogeneity being preserved by our scheme). Such a band is
represented in Figure 9c. The initial condition we used is the following:

f0(x, y, θ) = ρ̄

(
1 + 1

10

5∑
k=1

cos(pkθ) + cos
(

2pkπ
x

L

))
.

Bands were also observed in a modified model which we encoded to take advantage
of the preservation of homogeneity in one direction. A resulting band is presented in
Figure 9d.
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Numerical evidences show that the bands cannot be understood as traveling wave
solutions to the kinetic equation (3.1), as one may believe at first sight. Indeed, there
remains an inner motion inside the bands, that we can reveal by monitoring the max-
imal value of ρ through time (see Figure 10). This reveals an asymptotically periodic
behaviour that strongly resembles the notion of pulsating fronts, which has been exten-
sively studied in the context of reaction-diffusion phenomena [23]. A deeper analytical
understanding of this phenomenon is left for future work.

Finally, to strengthen the link between the phase transition and the formation of
bands, we show in Figure 11 two kinds of entropy computed for a range of values of the
diffusion coefficient d and the mean value of the initial condition ρ̄. Figure 11a represents
the entropy of f computed against the uniform distribution of the same mass:

Eu[f ] =
∫ L

0

∫ L

0

∫ 2π

0
f(t,x, θ) log

(
f(t,x, θ)

ρ̄

)
dθdx.

Figure 11b represents the generalized entropy of f computed against the corresponding
Von Mises distribution:

EVM [f ] =
∫ L

0

∫ L

0

∫ 2π

0
f(t,x, θ) log

(
f(t,x, θ)
M [ρ̄](θ)

)
dθdx,

where M [ρ̄](θ) = 2πρ̄ exp(µκd cos(θ))∫ 2π

0
exp(µκd cos(θ))dθ

is the only candidate as stationary Von Mises

distribution, κ satisfying the compatibility condition

2πρ̄
∫ 2π

0 cos θ exp
(
µκ
d cos(θ)

)
dθ∫ 2π

0 exp
(
µκ
d cos(θ)

)
dθ

= κ. (5.3)
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density ρ =

∫
S1 f(t,x, ω)dω. The arrows on the top correspond to the local mean

direction j(x). Figures 9a and 9b were obtained starting from the same random initial
condition. Figure 9c was obtained starting from a homgeneous in y initial condition.
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Figure 10: Maximal value of ρ(t,x) as a function of t.

Let us recall that the latter has only one solution κ = 0 when σ ≥ πµρ̄, and has exactly
one positive solution when σ < πµρ̄ [14].

The match between the two plots suggests that the latter stationary state candidate
is never stable except when κ = 0. Indeed for σ ≥ πµρ̄, the uniform distribution is stable
for the homogeneous problem and κ = 0; this corresponds to the top-left part of figure
11a, which suggests that this stability is transferred to the inhomogeneous problem
3.3. For σ < πµρ̄, however, we have κ > 0 and the stable state for the homogeneous
problem is described by the corresponding Von Mises distribution M [ρ̄](θ); Figure 11b
suggests that the inhomogeneous problem behaves otherwise, neither the uniform nor
the homogeneous Von Mises distribution corresponding to the long-time behaviour of
the equation, except possibly in a very small area near σ ≈ πµρ̄ (which appears more
clearly in the log-plots 11c and 11d). Instead, the unstability of both homogeneous
stationary states could be at the origin of the formation of bands.
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