Quentin Griette


Arnaud Ducrot, Q.G., Zhihua Liu and Pierre Magal. Differential Equations and Population Dynamics I, Introductory Approaches. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer International Publishing, 2022. 458 pages. DOI
Arnaud Ducrot, Q.G., Zhihua Liu and Pierre Magal. Differential Equations and Population Dynamics II, Advanced Approaches. in preparation (378 pages).



  1. Q.G., Pierre Magal and Min Zhao. Traveling waves with continuous profile for hyperbolic Keller-Segel equation. Eur. J. Appl. Math., 2024, accepted. arXiv
  2. Q.G., Matthieu Alfaro, Gaël Raoul and Sylvain Gandon. Evolution and spread of multi-adapted pathogens in a spatially heterogeneous environment. Evol. Lett., 2024, qrad073. DOI bioRxiv
  3. Q.G., Christopher Henderson and Olga Turanova. Speed-up of traveling waves by negative chemotaxis. J. Func. Anal., 285(10), 2023, n. 110115. DOI arXiv HAL
  4. Jean-Baptiste Burie, Arnaud Ducrot and Q.G. Asymptotic behavior of an epidemic model with infinitely many variants. J. Math. Biol., 87(40), 2023. DOI arXiv HAL
  5. Jacques Demongeot, Q.G., Yvon Maday and Pierre Magal. A Kermack–McKendrick model with age of infection starting from a single or multiple cohorts of infected patients. Proc. R. Soc. A 479(2272), 2023. n. 20220381. DOI arXiv
  6. Jacques Demongeot, Q.G., Pierre Magal and Glenn Webb. Vaccine efficacy for COVID-19 outbreak in New York City. Biology 11(3), 2022, 345. DOI medRxiv
  7. Matthieu Alfaro, Q.G., Denis Roze and Benoît Sarels. The spatio-temporal dynamics of interacting genetic incompatibilities. Part I: the case of stacked underdominant clines. J. Math. Biol. 84(3), 2022, n. 20. DOI HAL arXiv
  8. Q.G., Jacques Demongeot and Pierre Magal. What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. Math. Biosci. Eng. 19(1), 2022. pp. 537-594. DOI medRxiv
  9. Q.G., Jacques Demongeot and Pierre Magal. A robust phenomenological approach to investigate COVID-19 data for France. Math. Appl. Sci. Eng. 2(3), 2021, pp. 149-160. DOI medRxiv
  10. Xiaoming Fu, Q.G. and Pierre Magal. Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation. Math. Models Methods Appl. Sci. 31(05), 2021, pp. 861-905. DOI arXiv
  11. Q.G. and Pierre Magal. Clarifying predictions for COVID-19 from testing data: The example of New York State. Infect. Dis. Model. 6, 2021, pp. 273-283. DOI medRxiv
  12. Jacques Demongeot, Q.G. and Pierre Magal. SI epidemic model applied to COVID-19 data in mainland China. R. Soc. Open Sci. 7, 2020, e-print 201878. DOI medRxiv
  13. Xiaoming Fu, Q.G. and Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete Contin. Dyn. Syst. Ser. B 26(4), 2021, pp. 1931-1966. DOI
  14. Jean-Baptiste Burie, Arnaud Ducrot, Q.G. and Quentin Richard. Concentration estimates in a multi-host epidemiological model structured by phenotypic traits. J. Differential Equations 269(12), 2020, pp. 11492-11539. DOI HAL arXiv
  15. Q.G., Pierre Magal and Ousmane Seydi. Unreported cases for Age Dependent COVID-19 Outbreak in Japan. Biology 9(6), 2020, e-print 132. DOI medRxiv
  16. Xiaoming Fu, Q.G. and Pierre Magal. A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J. Math. Biol. 80(7), 2020, pp. 2257-2300. DOI HAL arXiv
  17. Léo Girardin and Q.G. A Liouville-type result for non-cooperative Fisher-KPP systems and nonlocal equations in cylinders. Acta Appl. Math. 170, 2020, pp. 123-139.DOI HAL arXiv
  18. Q.G. Singular measure traveling waves in an epidemiological model with continuous phenotypes. Trans. Amer. Math. Soc. 371(6), 2019, pp. 4411-4458. DOI HAL arXiv
  19. Matthieu Alfaro and Q.G. Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology. Nonlinear Anal. Real World Appl. 42, 2018, pp. 255-289. DOI arXiv
  20. Q.G. and Gaël Raoul. Existence and qualitative properties of travelling waves for an epidemiological model with mutations. J. Differential Equations 260(10), 2016, pp. 7115-7151. DOI HAL arXiv
  21. Q.G., Gaël Raoul and Sylvain Gandon. Virulence Evolution at the front line of spreading epidemics. Evolution 69 (11), 2015, pp. 2810-2819. DOI

Book chapters

  1. Q.G., Zhihua Liu, Pierre Magal and Robin Thompson. Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study,, in Mathematics of Public Health, pp. 173-195. Fields Institute Communications, Springer, Cham, 2022. DOI medRxiv
  2. Q.G. and Sébastien Motsch. Kinetic equation and self-organized band formations, in Active particles, Vol. 2., pp. 173--199. Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019. arXiv

Thesis manuscripts

Habilitation HAL