Quentin Griette



  1. Q.G., Jacques Demongeot and Pierre Magal. A robust phenomenological approach to investigate COVID-19 data for France, Math. Appl. Sci. Eng., accepted. DOI medRxiv
  2. Xiaoming Fu, Q.G. and Pierre Magal. Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation. Math. Models Methods Appl. Sci. 31 (05), 2021, pp. 861-905. DOI arXiv
  3. Q.G. and Pierre Magal. Clarifying predictions for COVID-19 from testing data: The example of New York State. Infect. Dis. Model. 6, 2021, pp. 273-283. DOI medRxiv
  4. Jacques Demongeot, Q.G. and Pierre Magal. SI epidemic model applied to COVID-19 data in mainland China. R. Soc. Open Sci. 7, 2020, e-print 201878. DOI medRxiv
  5. Xiaoming Fu, Q.G. and Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete Contin. Dyn. Syst. Ser. B 22, 2020. DOI
  6. Jean-Baptiste Burie, Arnaud Ducrot, Q.G. and Quentin Richard. Concentration estimates in a multi-host epidemiological model structured by phenotypic traits. J. Differential Equations 269 (12), 2020, pp. 11492-11539. DOI HAL arXiv
  7. Q.G., Pierre Magal and Ousmane Seydi. Unreported cases for Age Dependent COVID-19 Outbreak in Japan. Biology 9 (6), 2020, e-print 132. DOI medRxiv
  8. Xiaoming Fu, Q.G. and Pierre Magal. A cell-cell repulsion model on a hyperbolic Keller-Segel equation. J. Math. Biol. 80 (7), 2020, pp. 2257-2300. DOI HAL arXiv
  9. Léo Girardin and Q.G. A Liouville-type result for non-cooperative Fisher-KPP systems and nonlocal equations in cylinders. Acta Appl. Math. 170, 2020, pp. 123-139.DOI HAL arXiv
  10. Q.G. Singular measure traveling waves in an epidemiological model with continuous phenotypes. Trans. Amer. Math. Soc. 371 (6), 2019, pp. 4411-4458. DOI HAL arXiv
  11. Matthieu Alfaro and Q.G. Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology. Nonlinear Anal. Real World Appl. 42, 2018, pp. 255-289. DOI arXiv
  12. Q.G. and Gaël Raoul. Existence and qualitative properties of travelling waves for an epidemiological model with mutations. J. Differential Equations 260 (10), 2016, pp. 7115-7151. DOI HAL arXiv
  13. Q.G., Gaël Raoul and Sylvain Gandon. Virulence Evolution at the front line of spreading epidemics. Evolution 69 (11), 2015, pp. 2810-2819. DOI

Book chapter

Q.G. and Sébastien Motsch. Kinetic equation and self-organized band formations, in Active particles, Vol. 2., pp. 173--199, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019. arXiv

Thesis manuscript

PhD thesis HAL